Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain.

نویسنده

  • P Babij
چکیده

Previous work demonstrated that the rabbit smooth muscle myosin heavy chain gene showed sequence divergence at the 25kDa/50kDa junction of the S1 subfragment when compared to chicken gizzard and chicken epithelial nonmuscle myosin. RNase protection analysis with a probe spanning this region detected two partially protected fragments which were not present in RNA from vascular tissue and only found in RNA from visceral tissue. The polymerase chain reaction was used to amplify a 162bp product from primers spanning the putative region of divergence and DNA sequence analysis revealed a seven amino acid insertion not previously detected in other characterised cDNA clones. RNase protection analysis using the PCR product as probe showed that the inserted sequence was expressed exclusively in RNA from visceral tissue. Similar RNA analysis showed that the visceral isoform was not expressed in 20 day fetal rabbit smooth muscle tissues. These results indicated that the new visceral isoform was expressed in a tissue-specific and developmentally regulated manner. Genomic DNA sequencing and mapping of the exon-intron boundaries showed that the visceral isoform was the product of cassette-type alternative splicing. The inclusion of a visceral-specific sequence near the Mg-ATPase domain and at the 25kDa/50kDa junction suggests that the visceral isoform may be important for myosin function in smooth muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A myosin phosphatase targeting subunit isoform transition defines a smooth muscle developmental phenotypic switch.

Smooth muscle myosin phosphatase dephosphorylates the regulatory myosin light chain and thus mediates smooth muscle relaxation. The activity of this myosin phosphatase is dependent upon its myosin-targeting subunit (MYPT1). Isoforms of MYPT1 have been identified, but how they are generated and their relationship to smooth muscle phenotypes is not clear. Cloning of the middle section of chicken ...

متن کامل

Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila

The Drosophila 36B muscle myosin heavy chain (MHC) gene has five sets of alternatively spliced exons that encode functionally important domains of the MHC protein and provide a combinatorial potential for expression of as many as 480 MHC isoforms. In this study, in situ hybridization analysis has been used to examine the complexity and muscle specificity of MHC isoform expression in the fibrill...

متن کامل

Smooth muscle myosin is composed of homodimeric heavy chains.

Vertebrate smooth muscle myosin heavy chains (MHCs) exist as two isoforms with molecular masses of 204 and 200 kDa (MHC204 and MHC200) that are generated from a single gene by alternative splicing of mRNA (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). A dimer of two MHCs associated with two pairs of myosin light chains forms a functional myosin molec...

متن کامل

Myosin heavy chain isoform expression in rat smooth muscle development.

Smooth muscle myosin heavy chains (MHCs), the motor proteins that power smooth muscle contraction, are produced by alternative splicing from a single gene. The smooth muscle MHC gene is capable of producing four isoforms by utilizing alternative splice sites located at the regions encoding the carboxy terminus and the junction of the 25- and 50-kDa tryptic peptides. These four isoforms, SM1A, S...

متن کامل

Transformer (Tra2β): master regulator of myosin phosphatase alternative splicing and smooth muscle responses to NO/cGMP signaling

Background Nitric oxide signaling through the cGMP kinase (cGK1a) activates Myosin Phosphatase (MP) leading to calcium de-sensitization of force production. Leucine zipper (LZ) motifs present in the C-terminus of MYPT1 and N-terminus of cGK1a are thought to be essential for the hetero-dimerization of cGK1 and MYPT1 and cGK1 activation of MP [1]. An isoform of MYPT1 that lacks the C-terminal LZ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 1993